Circular Queue using Array
What is a Circular Queue?
A Circular Queue is a special form of a queue where:
-
It behaves in a circular fashion.
In a normal (linear) queue, once the rear reaches the last index of the array, we cannot insert even if there are empty spaces at the beginning.
➔ Circular Queue solves this by wrapping around.
Circular Queue Operations
Operation | Meaning |
---|---|
enqueue(x) | Insert an element into the queue. |
dequeue() | Remove an element from the queue. |
peek() | Get the front element without removing it. |
isEmpty() | Check if the queue is empty. |
isFull() | Check if the queue is full. |
Circular Queue Algorithms
✅ Assume:
-
Queue array:
queue[MAX]
-
Initially:
front = 0
,rear = 0
-
A slot is wasted to distinguish full and empty.
Algorithm for isEmpty()
Algorithm isEmpty(front, rear)
1. If front == rear
Return TRUE
2. Else
Return FALSE
Meaning:
If
If
front == rear
, queue is empty.Algorithm for isFull()
1. If (rear + 1) mod MAX == front
Return TRUE
2. Else
Return FALSE
Meaning:
If the next position of rear
is front
, the queue is full.
1. If isFull() then
Output "Queue Overflow"
Exit
2. Else
rear = (rear + 1) mod MAX
queue[rear] = item
3. End If
Algorithm for Dequeue (Remove an element)
1. If isEmpty() then
Output "Queue Underflow"
Exit
2. Else
front = (front + 1) mod MAX
item = queue[front]
3. End If
4. Return item
Algorithm for Peek (View Front Element)
1. If isEmpty() then
Output "Queue is Empty"
Exit
2. Else
temp = (front + 1) mod MAX
Return queue[temp]
🚀 Time Complexity of Circular Queue Operations
Operation | Time Complexity | Reason |
---|---|---|
Enqueue (Insert) | O(1) | Insert element at rear , just update rear index (with wrap around) |
Dequeue (Remove) | O(1) | Remove element from front , just update front index (with wrap around) |
Front (Peek) | O(1) | Access the element at front index |
Rear (Peek) | O(1) | Access the element at rear index |
isEmpty | O(1) | Compare front and rear indices or check size |
isFull | O(1) | Check if queue is full by comparing front and rear |
C Program - Circular Queue using array
#include <stdio.h>
#include<stdlib.h>
#include <stdbool.h>
#define MAX 10
// initilazing queue
int cqueue[MAX];
int rear = 0;
int front = 0;
// Function to check if the cqueue is empty
bool isEmpty() {
return front==rear ;
}
// Function to check if the cqueue is full
bool isFull() {
return (rear+1)%MAX == front;
}
void enqueue() // enqueue
{
int item;
if (isFull())
printf("Queue Overflow \n");
else
{
printf("\nInset the element in queue : ");
scanf("%d", &item);
rear = (rear + 1)%MAX;
cqueue[rear] = item;
}
} /*End of insert()*/
void dequeue() //dequeue
{
if(isEmpty())
{
printf("\nQueue Underflow \n");
return ;
}
else
{
front = (front + 1) %MAX;
printf("\nElement deleted from queue is : %d\n", cqueue[front]);
}
} /*End of delete() */
void display()// print queue
{
int i;
if (isEmpty() )
printf("\nQueue is empty \n");
else
{ printf("\nQueue is : ");
for (i = (front+1)%MAX; i != (rear+1)%MAX; i=(i+1)%MAX)
printf("%d ", cqueue[i]);
printf("\n");
}
}
// Function to peek at the front item
int peek() {
if (isEmpty()) {
printf("Queue is empty. Nothing to peek.\n");
return -1; // Error value
} else {
return cqueue[front+1];
}
}
int main()
{
int choice;
while (1)
{
printf("\n1.Insert element to queue \n");
printf("2.Delete element from queue \n");
printf("3.Display all elements of queue \n");
printf("4.Peek \n");
printf("5.Quit \n");
printf("\nEnter your choice : ");
scanf("%d", &choice);
switch (choice)
{
case 1:
enqueue();
break;
case 2:
dequeue();
break;
case 3:
display();
break;
case 4:
int x=peek();
if(x!=-1) printf("\nfront element is=%d\n",x);
break;
case 5:
exit(1);
default:
printf("\nWrong choice \n");
} /*End of switch*/
} /*End of while*/
return 0;
} /*End of main()*/
An alternate implementation without wasting a slot
C Program Implementation- Circular Queue#include <stdio.h>
#include<stdlib.h>
#include <stdbool.h>
#define MAX 10
// initilazing queue
int cqueue[MAX];
int rear = - 1;
int front = -1;
// Function to check if the cqueue is empty
bool isEmpty() {
return front==-1 ;
}
// Function to check if the cqueue is full
bool isFull() {
return (rear+1)%MAX == front;
}
void insert() // enqueue
{
int item;
if (isFull())
printf("Queue Overflow \n");
else
{
printf("\nInset the element in queue : ");
scanf("%d", &item);
if(isEmpty())
front=rear=0;
else
rear = (rear + 1)%MAX;
cqueue[rear] = item;
}
} /*End of insert()*/
void delete() //dequeue
{
if(isEmpty())
{
printf("\nQueue Underflow \n");
return ;
}
printf("\nElement deleted from queue is : %d\n", cqueue[front]);
if ( rear == front )
{
front=rear=-1;//make it empty
}
else
{
front = (front + 1) %MAX;
}
} /*End of delete() */
void display()// print queue
{
int i;
if (isEmpty() )
printf("\nQueue is empty \n");
else
{ printf("\nQueue is : ");
if(front==rear)
printf("%d\n", cqueue[front]);
else
{
for (i = front; i != rear; i=(i+1)%MAX)
printf("%d ", cqueue[i]);
printf("%d ", cqueue[i]); //print the element at rear
printf("\n");
}
}
}
// Function to peek at the front item
int peek() {
if (isEmpty()) {
printf("Queue is empty. Nothing to peek.\n");
return -1; // Error value
} else {
return cqueue[front];
}
}
// Function to get the size of the queue
int size() {
if (isEmpty()) {
return 0;
} else {
if (rear >= front ) return rear - front + 1;
else return MAX-front+rear-0+1;
}
}
int main()
{
int choice;
while (1)
{
printf("\n1.Insert element to queue \n");
printf("2.Delete element from queue \n");
printf("3.Display all elements of queue \n");
printf("4.Peek \n");
printf("5.Size of the queue\n");
printf("6.Quit \n");
printf("\nEnter your choice : ");
scanf("%d", &choice);
switch (choice)
{
case 1:
insert();
break;
case 2:
delete();
break;
case 3:
display();
break;
case 4:
int x=peek();
if(x!=-1) printf("\nfront element is=%d\n",x);
break;
case 5:
printf("\nsize of the queue is =%d\n",size());
break;
case 6:
exit(1);
default:
printf("\nWrong choice \n");
} /*End of switch*/
} /*End of while*/
return 0;
} /*End of main()*/
Comments
Post a Comment